Research: Imaging Microglial Activation

Ratchford JN et al. Decreased microglial activation in MS patients treated with glatiramer acetate.J. Neurol 2011 Dec [Epub]

Activated microglia are thought to be an important contributor to tissue damage in multiple sclerosis (MS). The level of microglial activation can be measured non-invasively using [(11)C]-R-PK11195 (radioactive carbon drug. normal carbon is (12)C), a radiopharmaceutical for positron emission tomography (PET). Prior studies have identified abnormalities in the level of [(11)C]-R-PK11195 uptake in patients with MS, but treatment effects have not been evaluated.

Nine previously untreated relapsing-remitting MS patients underwent PET and magnetic resonance imaging of the brain at baseline and after 1 year of treatment with glatiramer acetate. Parametric maps of [(11)C]-R-PK11195 uptake were obtained for baseline and post-treatment PET scans, and the change in [(11)C]-R-PK11195 uptake pre- to post-treatment was evaluated across the whole brain. Region-of-interest analysis was also applied to selected subregions. Whole brain [(11)C]-R-PK11195 binding potential per unit volume decreased 3.17% (95% CI: -0.74, -5.53%) between baseline and 1 year (p = 0.018). A significant decrease was noted in cortical gray matter and cerebral white matter, and a trend towards decreased uptake was seen in the putamen and thalamus.

The results are consistent with a reduction in inflammation due to treatment with glatiramer acetate, though a larger controlled study would be required to prove that association. Future research will focus on whether the level of baseline microglial activation predicts future tissue damage in MS and whether [(11)C]-R-PK11195 uptake in cortical gray matter correlates with cortical lesion load.

The capacity to monitor microglial activation is a important outcome particularly for the prospect of treating progresive MS. These stdies translate much earlier studies in animals

Labels: ,